Big-benefit mutations in a bacteriophage inhibited with heat.
نویسندگان
چکیده
High temperature inhibits the growth of the wild-type bacteriophage phiX174. Three different point mutations were identified that each recovered growth at high temperature. Two affected the major capsid protein (residues F188 and F242), and one affected the internal scaffolding protein (B114). One of the major capsid mutations (F242) is located in a beta strand that contacts B114 in the procapsid during viral maturation, whereas the other capsid mutation (F188) is involved in subunit interactions at the threefold axis of symmetry. Selective coefficients of these mutations ranged from 13.9 to 3.8 in the inhibitory, hot environment, but all mutations reduced fitness at normal temperature. The selective effect of one of the mutations (F242) was evaluated at high temperature in four different genetic backgrounds and exhibited epistasis of diminishing returns: as log fitness of the background genotype increased from -0.1 to 4.1, the fitness boost provided by the F242 mutation decreased from 3.9 to 0. 8. These results support a model in which viral fitness is bounded by an upper limit and the benefit of a mutation is scaled according to the remaining opportunity for fitness improvement in the genome.
منابع مشابه
Construction of the Recombinant Plasmid Expressing AID under the Control of Temperature-sensitive Promoter of Bacteriophage Lambda
Background and purpose: Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme responsible for somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes within the B-cell follicle of peripheral lymphoid organs. Ectopic overexpression of the enzyme leads to mutations in non-B cells and Escherichia coli (E.coli) genes. However, induction of mutations in E...
متن کاملThermal-Economic Optimization of Shell and Tube Heat Exchanger by using a new Multi-Objective optimization method
Many studies are performed by researchers about Shell and Tube Heat Exchanger but the Multi-Objective Big Bang-Big Crunch algorithm (MOBBA) technique has never been used in such studies. This paper presents application of Thermal-Economic Multi-Objective Optimization of Shell and Tube Heat Exchanger Using MOBBA. For optimal design of a shell and tube heat exchanger, it was first thermally model...
متن کاملاستفاده از باکتریوفاژ لامبدا بهعنوان حامل آپوپتین جهت رسانش موثر آن به درون تومور BT-474 سرطان سینه انسانی
Background: Apoptin is a protein from chicken anemia virus that could induce apoptosis specifically in the cancer cells but it has not any effect in the normal cells. Phage therapy is a novel field of cancer therapy and phage nanobioparticles (NBPs) such as λ phage could be modified to deliver and express genetic cassettes into eukaryotic cells safely in contrast with animal viruses. The bacter...
متن کاملHeat mutagenesis in bacteriophage T4: another walk down the transversion pathway.
Extracellular nonreplicating bacteriophage T4 particles accumulate mutations as functions of temperature, time, pH, and ionic environment via two mechanisms: 5-hydroxymethylcytidine deamination produces G.C----A.T transitions while a guanosine modification produces transversions. Neither frameshift mutations nor mutations at A.T base pairs are appreciably induced. We now show that heat induces ...
متن کاملمونتاژ ژنها، روش جدیدی برای شناسایی جهشهایی ژنتیکی، کاربردی اساسی برای بررسی مولکولی ژنهای پیچیده مرتبط با سرطان ارثی پستان
Background : Most of the offending genes of diseases are quite big and complex with varieties of exons. Gene montage is a new technique for formation of a big linked DNA segment that could be easily detected by DNA sequencing or Denaturing High Performance Liquid Chromatography (DHPLC). Methods : Exons 2,20,23 and 24 of BRCA1 gene were linked and analyzed by DNA sequencing. Exons 2 and 20 are i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 17 6 شماره
صفحات -
تاریخ انتشار 2000